

Analyzing Trends in Open Source Software Contributions

Andrew Casner
University of Colorado, Boulder

andrew.casner@colorado.edu

Oliver Collins
University of Colorado, Boulder

oliver.collins@colorado.edu

Carl Cortright
University of Colorado, Boulder

carl.cortright@colorado.edu

 Shubha Swamy
University of Colorado, Boulder
shubha.swamy@colorado.edu

1. Abstract
Over time, the most popular programming languages
have shifted dramatically. Moreover, while there
might be an overall trend with the rise and fall of
these languages, often it can be quite difficult to
predict these fluctuations. So for this project, we have
decided to dive into a large open-source dataset that
looks into contributions to open-source software and
try to map what we hope, will be an accurate
representation of these trends. Acquired from
libraries.io, this dataset with over 397+ million rows
provides us with repository names, timestamps,
programming languages, and many more attributes
related to package managers supported through the
platform. Providing this information gave us a lot of
information, yet required a sizeable amount of
cleaning, analyzing, and parsing.

1.1 Important Questions

The primary questions we will consider during the
duration of this project will focus on analyzing trends
in open source projects. What insights can we gain to
improve the open source community further? How
can we identify areas in the open source community
that need improvement? Moreover, can we predict
upcoming popular repositories?

1.2 Brief Summary

We based a lot of our analysis on trends we thought
would exist between attributes.

2. Introduction

Our primary goal of this project is to gain insights
about open source software. We will accomplish this
goal by mining data from a dataset about open source
projects. We will focus our work on four main areas:
tracking trends in programming languages, analyzing
how popular repositories have changed over time,
how contributions to those repositories have changed
over time, and also monitoring repository life cycles.

2.1 Questions

We will consider a few central questions to help guide
us through the data mining process to gain better
intuition about open source software. The first
question we seek to answer is: “What insights can we
gain to improve the open source community further?”.
As we use various techniques to mine the data
throughout the project, we hope to understand more
about the information various languages used,
contributions to popular repositories, and trends in
dependencies which rely solely on those open source
projects. The second question we hope to answer is:
“How can we identify areas in the open source
community that need improvement?”. This question
will not only help us understand the missing aspects
of the open source community but hopefully bridge a
gap within the community. To find answers to this
question, we will analyze trends in contributions and
repositories to figure out areas of improvement within
the open source community. Also, finally, we aim to
answer the most driving question of our project: “Can
we predict upcoming popular repositories?”. We hope

1

to answer this question using all the information from
the mined data. Our team would like to predict
upcoming popular repositories based on all the
insights we gain from the data analysis we will
perform. Answering this question will be beneficial to
understanding the open source community.

3. Related Work

3.1 Literature Survey

There has been a significant body of research done on
patterns in open source contributions. Every year
Stack Overflow, a popular site for asking and
answering coding questions, does a poll of the
developers on their platform [1]. This research is used
to track popular languages and libraries developers
are using on the platform. Other research focuses on
the potential impacts of research on open source
software on the broader computer science community
[2]. This research can help act as a guide as we decide
what areas of open source development are essential
to focus on in our data mining project. The majority
of the research in this area has explicitly focused on
Github repositories, attempting to determine the
influence of any given project [3]. In our work, with
the dataset we have access to, we will attempt to
extend this research to all open source projects
independent of where they each one is hosted or built.
Other research by the Apache foundation has shown
that the majority of open source contributions people
create are in a way that is not collaborative but instead
driven by individual developers [4].

4. Dataset
The dataset we will be using for our project comes
from a company called libraries.io. The purpose of
libraries.io is to monitor open source projects to help
developers better understand dependencies for their
projects.

The dataset itself contains 311 million data points
from 34 package managers and three source code
repositories, including npm, GitHub, PyPi,
RubyGems, Maven, Bower, and other large,
language-specific package managers. With this

breadth, libraries.io can track over 2.7 million unique
open source packages, spanning 31 million
repositories, tracking 161 million dependencies
between them [5]. With this large of a dataset, we
expect to have many different variables of interest that
we can mine.

The dataset comes packaged in several large CSV
formatted files. The main file that we will be mining
is the projects database. This file contains all of the
individual projects libraries.io is tracking. This file
also has vital attributes for each project including
language, status (active, depreciated), dependent
projects count and more. Other important datasets
include the dependencies CSV, which has detailed
information on interdependencies between projects.
Using this module we can build a dependencies graph,
and mine information about which projects are most
important in the open source ecosystem.

5. Main Techniques Applied
5. 1 Data Cleaning and Preprocessing

Data cleaning and preprocessing is a vital component
of our project. It is crucial that we work with a dataset
with good quality data to gain accurate results. We
will conduct a series of significant steps to ensure we
use data to a good standard. Our data preprocessing
will focus on five main areas including data cleaning,
integration, transformation, reduction, and
discretization. These steps will ensure that the final
results we will gain from our analysis will be as
accurate as possible.

5. 1.1 Proposed Work

Since this dataset is already in excellent condition, we
will not perform much cleaning on the dataset.
However, some necessary data cleansing will need to
be completed such as scrubbing the dataset to remove
null values and synchronizing time zones. Once these
simple tasks are complete, our team will perform
more advanced data preprocessing techniques such as
matching a unique user across multiple package
managers.

2

Once our team has appropriately cleaned our data, we
will then decide which patterns answer the questions
asked of the dataset. Those will be used to create
visualizations, such as bar plots and graphs to show
the trends found in the given data. Using the data

available, we will construct a dependency graph of all
of the dependencies in the entire open source
ecosystem. We will then conduct an eigenvector
analysis on this graph to find the most influential
projects. This same analysis can then be done on
language-specific sub-graphs to find the most
influential projects in each language.

Finally, we will create a write up of what we have
learned and possibly publish it online in a way that is
consistent with the open source mentality that we are
studying. It is essential to our team that what we learn
about the open source community can be freely and
openly shared. Our write up is made to align with the
license that the libraries.io dataset is supporting.

5.1.2 Evaluation Methods

We will be gathering various conclusions from our
dataset. Our project focuses on four areas: tracking
trends in programming languages, analyzing how
popular repositories have changed over time, how
contributions to those repositories have changed over
time, and also tracking repository life cycles. We will
need to utilize various evaluation methods to draw
insights about those topics. To track trends in
programming languages over time, we will analyze
the frequency of popular programming languages
used in various open source projects and how that has

shifted over time. To analyze how popular
repositories have changed over time, we will
investigate how project dependencies of various open
source projects have changed over time. To analyze
how contributions to repositories have changed over

time, we will first narrow down our data range to top
contributed repositories, and then we will analyze the
rate at which the contributions to those repositories
have changed over time. Through this, we will also be
able to conclude information about repository life
cycles. By looking at trends and dependencies of
various repositories over time, we will be able to
conclude the repository’s life cycle.

In addition to analyzing our data in regards to the four
main areas we will be focusing on, we will also
compare our results to conclusions found in the
Literature Survey section (2).

5.1.3 Tools

We will be using several tools to mine and analyze the
dataset to reach our conclusions about open source
software. The primary programming language in this
project will be Python. We will be using various
Python libraries to analyze, parse, and present our
data. One of the tools we aim to use, Pandas, will be
used for most of our data analysis. As for our
computational and statistical analysis, we will be
using SciPy and NumPy. Since our team will be
presenting our findings through data visualizations,
we will be using a plethora of different libraries
including Matplotlib, Bokeh, graph-tool, Seaborn, and
several others. Moreover, lastly, for a lot of our

3

numerical simulations, statistical modeling, data
visualization, as well as a way to keep our code clean
and organized we will be encapsulating our code in
Jupyter Notebooks.

Also, we will also use AWS Cloud 9 as a
collaborative working environment. The Cloud 9 is a
collaborative IDE that allows us to all contribute to
the code base and run intensive data mining tasks on a
much more powerful cloud computer.

5.1.4 Milestones

We will use the milestones outlined below to guide us
through the process of mining our data. We will be
watching the same timeline as outlined in the project
description in regards to our milestones but we will
mostly be following the milestone table our team has
devised below for additional deadlines.

No. Milestone Due Date

1 Proposal Presentation* February 27th

2 Proposal Paper* March 6th

3 Data Hosting on AWS March 20th

4 Data Cleaning &
Preprocessing

April 1st

5 Create Test Data April 7th

6 Progress Report* April 10th

7 Data Visualizations April 17th

8 Data Analysis April 17th

9 Analyzing Results April 20th

10 Application April 20th

11 Interactive Site with
Visualizations

April 23rd

12 Final Presentation* April 23rd

13 Final Paper* May 1

* indicates milestones (due dates) set by professor

5.1.5 Data Hosting on AWS

To collaboratively work on this project, we used a
shared platform to work collaboratively on this
project. We settled on using Amazon Web Services
Cloud 9 as our IDE, cloud computing resource, and
storage solution for our project. A significant amount
of time involved figuring out and setting up the proper
EC2 Instance type and mounting an EBS volume to
the Instance. Once we finally loaded and unzipped the
dataset to the volume on AWS, we began cleaning
and preprocessing the data.

5.1.6 Data Cleaning and Preprocessing

We parsed and cleaned the data to ensure the quality
of the dataset even though it came pre-processed. We
performed several processes to further enhance the
quality of our dataset including data cleaning, data
integration, data transformation, and data reduction.
The primary purpose of these pre-processing methods
was to be confident that the dataset was clean of
incomplete, noisy, and inconsistent data. The quality
of data is significant when it comes to concluding the
information because higher quality data yields more
accurate results [6].

We used several libraries in python to help us
organize and clean the data. The primary library that
we used to accomplish this was Python Pandas.
Pandas is a python library used for data manipulation
and analysis.Since our data set consisted of millions
of data points, we used the head function is Pandas to
help us preview the data. Previewing various parts of
our dataset allowed us to not only understand the
organization of our dataset better but also helped us
determine what steps we needed to take to ensure a
high-quality dataset. Using the describe function in
pandas gave us a better insight into our data set. We
were able to gain quick summaries of our overall
dataset using the describe function in pandas for

4

various columns. For example, we were able to
conclude the average dependencies for open source
projects. This conclusion was crucial for us to
recognize the significant trends in our dataset. We
used other functions in Pandas to delve deeper into

our data. Once we were able to find unusual patterns
and had a greater understanding of our data, we
continued through the cleaning process. By analyzing
the count for each attribute, we concluded that
individual data values were missing. Missing values
contribute significantly to data quality problems. It is
imperative to handle these missing values to ensure
our data analysis will yield high-quality results. To fix
this issue, we filled in numerical data with the
attribute mean and categorical data with a global
constant relating to its corresponding attribute. The
data comes in six different packages-- projects,
versions, tags, dependencies, repositories, repository
dependencies, and projects with related repository
fields. Since we will be concluding all these six
packages, we had to ensure that we applied this
cleaning process on all six packages.

After we completed our initial step of the data
preprocessing method, data cleaning, we continued
the process to ensure a data set of high standard. The
next process involved data integration. We handled
the issue of redundancy in this process. Since all our
data is from a single database, we did not encounter
the problem of running into data duplicates. Our data
reduction was a significant step in our data
preprocessing. This process eliminated irrelevant
features and reduced noise which helped us crucially
since we are working with a massive dataset. In turn,
this will speed up the mining and allow for more
straightforward visualizations. Our goal for data
reduction was to use a dataset much smaller in
volume representative of our whole dataset which
would produce almost the same mining results as it

would for our entire data set (see section ‘Create Test
Data’ below). Our final step of data transformation
included using the Pandas library in python to
perform operations such as data discretization and
normalization.

5.1.7 Create Test Data

We extracted a smaller subset of data from our data
set to create our test data set. The test data allowed us
to practically run code on a sample before applying it
to the original dataset with over 397 million rows of
data. Even though we are running an EC2 Instance
through AWS that can process through all of our data
quickly and seamlessly, we still think it would be
beneficial to work through a smaller dataset on our
machines as it would still take a substantial time
running through our EC2 Instance. Moreover, since
the AWS Instance we are running on is significantly
more costly than running through the dataset on our
computer, it would save us not only valuable time but
money as well.

5.1.8 Data Visualizations

By the 17th of April, we plan on producing a set of
stimulating visuals that we have obtained from mining
through our dataset. This milestone will allow us to
not only understand our dataset but also enable us to
display our findings succinctly. We plan on
visualizing what our team has stated in our Problem
Statement (1) including finding trends within
programming languages, popularities of open source
repositories over time as well as their life cycles. We
also plan on visualizing additional topics we might
find interesting while mining the dataset. This
additional knowledge will allow us to mine the data
adequately given our other domain experience.

5.1.9 Data Analysis

In addition to our data visualization milestone, our
data analysis milestone is in place so that we can start
to mine and pull real results from our dataset. While
all the previous milestones were in place to set us up
to do our data analysis, we can finally begin to extract
valuable knowledge from our dataset. Our team plans

5

on utilizing many different clustering methods on the
data, and across many different dimensions to identify
and find undiscovered
patterns about open
source development.

We plan on applying
most of the skills and
techniques we are
learning in this class.
A rough exhaustive list
includes clustering
through k-means,
k-medoids, DBSCAN;
confusion matrices;
contingency tables;
naïve Bayesian
classification; and
linear, multiple, and
log-linear regression
models.

5.1.10 Analyzing Results

Similar to the previous milestone, analyzing our data
is in place to allow us to examine our current results
and attempt to comprehend all of our findings. While

the previous milestone is our team mining the data, in
analyzing the data we get to see what kinds of

applications or
implications that
insight can provide.
We will attempt to
understand our
findings through a few
different metrics. First,
we will evaluate our
visualizations and find
anything interesting
from them. Next, from
our data analysis using
the tools stated from
our Tools section (6),
we will see if we can
find anything that
seems to provide any

sort of information our team might find intriguing or
unique. Moreover, once we have dug through our

findings, we can further proceed to understand the
direction our team would love to move forward with
on this project.

5.1.11 Application

6

Once we complete analyzing our data, we will
conclude the applications from our results. This
process will help us answer our questions that we
defined in Evaluation Methods (5). We initially stated
that our data mining would focus on four main areas:
tracking trends in programming languages, analyzing
how popular repositories have changed over time,
how contributions to those repositories have changed
over time, and repository life cycles. We will
conclude applications and apply the results we will
gain through our data analysis to these topics. In our
application, we will focus on how our conclusions
will help us make better and more useful decisions
regarding open source projects. Open source projects
play a significant role in the development of software.
Tens of thousands of open source projects run
worldwide, and millions of users rely on open source
software [2]. Concluding applications based on our
data analysis will help us better understand open
source software that influences millions across the
world.

5.1.12 Interactive Site With Visuals

While the course does not require this milestone, we
think it would be a great way to showcase the data we
have mined. We plan on hosting a website through
GitHub pages, as a way to view and interact with the
findings our team has mined. We aim to provide all
our visuals, analyses we encountered, and how we
mined and found all of our findings on our site so
others can try and explore and understand how we
came to this point. Creating this website is an
essential step for us as we want to show off all the
hard work we put into this project, as well as allow
others to use the knowledge and data we mined to
hopefully better the Open Source Software
Community.

5.1.13 Final Paper

While our course requires this final paper, we still
think it is a great way to portray the culmination of
work our team has put into the project over the past
few months. The final paper will be in the ACM SIG
paper format with 11 point font and 1.1 line spacing

just as all of our other progress reports are and will
include our abstract, all of our related works and
findings, as well as the tools we used. Moreover, if
our findings are significant, we plan on releasing our
paper for others to learn from and extend on if
desired.

5.1.14 Results from Preprocessing

Below are a few graphs that parse through the entire
dataset and provide us with a cluster map and a
frequency table that hopefully visualizes the data in a
meaningful way. Most of the other visualizations we
have pulled so far have either provided no visually
appealing data or did not correlate attributes.

The above graphic is a representation of the
“completeness” of our data. The graphic shows the
Nullity correlation of one particular data set. The
nullity correlation ranges from -1 (if one variable
appears the other does not) to 0 (variables appearing
or not appearing have no effect on one another) to 1
(if one variable appears the other also does).
Essentially this gave us a quick overview of the
“completeness” of the data and allowed us to gain
more insight into our dataset.

7

The graphic presented above shows us the
“completeness” of one of the datasets. On the top of
the graph, it is possible to see each column in the
dataset. A dark bar represents complete data, where
whitespace indicates null values. This quick
visualization of the data allowed us to quickly rule out
points of data to try to use in our data mining process
as there seems to be a lack of information on some
columns.

5. 2 Data Warehouse

After getting the data from libraries.io in a much more
usable form, we then loaded the dataset into our EC2
instance. The server acted as our data warehouse
where we were able to interact and hold all the data in
a meaningful way. Through AWS, we were able to
manipulate the data in any way we wanted. Moreover,
since the data we have was static, we did not have to
worry about data coming from a transactional
database.

As for the data marts, we used individual aspects of
our analytical work. For example, we took data from
the primary dataset and created smaller subsets. These
smaller subsets were necessary as it allowed our team
to analyze the data more efficiently. Further, since the
larger dataset was much more computationally
difficult to compute, this was one of the only options
we seemed to find.

5. 3 Clustering and Classification

The use of clustering was essential to answering a few
of our core questions. To try to find deficiencies in the
open source community we thought it would be best
to try to cluster repositories, and from there we could
identify clusters that are “lacking” and can benefit
from increased community involvement. To do this,
we went about implementing a K-Means clustering
algorithm on the dataset. We can use common metrics
from each repository to attempt to cluster repositories
based on their “health.” We define a “healthy”
repository to be a repository that has a comparable
level of contribution to the number of issues that the
repository is facing. Running K-Means on the
Repositories dataset, using “Open Issue Count” and

“Contributors Count” as the X and Y axis, and using
six clusters, returned exciting results.

Using the center of each cluster, we can compute the
average number of Open Issues/Contributors; this can
give us an insight into the “health” of each cluster.

Cluster Number Open Issues/
Contributors

1 1.28

2 3.71

3 3.49

4 5.78

5 1.03

6 0.26

Given the results defined above, we can see that
Cluster four is in most need of more help, as the have
the highest average ratio of Issues to Contributors.
Not only did we run K-Means on just these two
dimensions, but we also ran it across multiple metrics.
We analyzed Six different metrics for each repository:
“Stars Count,” “Forks Count,” “Open Issues Count”,
Watchers Count,” “Contributors Count,” and
“SourceRank”(Libraries.io custom ranking for each
repository). The full results of all these clusterings,

8

including the center of each cluster, and the number of
repositories in each cluster, can be found here.

KMeans was not the only clustering algorithm we ran
on the dataset. We implemented DBSCAN as well.
When we ran DBSCAN on a smaller subset of our
data we found that the results were inconclusive. The
clusters that the algorithm returned were indistinct
and had little variation between the two. We believe
that the massive amount of data we have caused this
as well as the fact that most repositories have a
minimal distinction between them. When we ran
DBSCAN on a more extensive set of our data we had
lots of issues with RAM and memory management on
our EC2, and we were unable to extract results.
Although we were disappointed with this outcome, we
learned a lot about the differences between clustering
algorithms and how each one can produce massively
different results.

6. Key Results
To revisit our fundamental questions: What insights
can we gain to improve the open source community
further? How can we identify areas in the open source
community that need improvement? Can we predict
upcoming popular repositories?

How can we identify areas in the open source
community that need improvement?

The answer to this question, we believe that just one
cluster of two data points is not enough. We decided
to compile a list of repositories that we believe need
help, but also are worth contributing. We decided on
the metrics of “Issues/Contributors”,
“Stars/Contributors”, and “SourceRank/Forks”. Using
our K-Means algorithm we can detect the repositories
most in need of contribution help, those with the most
interest from the community, and Libraries.io’s
favorite repositories with the least amount of work.

Cluster Number
(Repository Count)

Open Issues /
Contributors

1 (6390) 1.28

2 (703) 3.71

3 (112) 3.49

4 (20) 5.78

5 (143696) 1.03

6 (258) 0.26

We selected Cluster two as the most “unhealthy”
repository from this group. We acknowledge that
Cluster four is in more “need” of community help,
although the small sample size of repositories makes
the cluster more of an outlier.

Cluster Number
(Repository Count)

Star Count /
Contributors

1 (306577) 7.06

2 (277) 81.62

3 (13) 84.89

4 (1024) 70.04

5 (62) 83.13

6 (4554) 43.69

Here we will select Cluster two as we view it as the
most significant cluster in need of community
assistance.

Cluster Number
(Repository Count)

Source Ranks /
Fork Count

1 (230669) 2.90

2 (511) 151.44

3 (31) 806.03

4 (1) 2423.04

9

https://github.com/carlcortright/OpenSourceMiners/blob/master/code/results.txt

5 (111) 370.19

6 (3453) 36.04

Note: Cluster four seems to be a notable outlier,
K-Means should have been rerunning with just five
clusters and not six.

Here we will select Cluster five as we view it as the
most massive cluster with the highest rank and least
amount of contribution.

Merging the list of these three clusters we were able
to identify 17 repositories in all three clusters. We
deem these 17 repositories to be in need of the most
community assistance. Using a more detailed
approach we believe that our data mining could
produce a list of top repositories that could use
contribution. From there we could publish that list and
hopefully attract developers to contribute to those
repositories.

Can we predict upcoming popular repositories?

We took the same approach as the previous question
to answer this question. We identified the clusters of
“Stars/Contributors,” “Stars/Forks,” and

“Forks/Issues” as the best indicators of future growth
and popularity of a repository. These two indicators
will give us a list of “up and come” repositories that
we believe will become very widely used and popular
soon. We do note that this approach may be flawed.
The best way of predicting future “success” and

prominence would most likely use Machine Learning
to analyze past trends and predict future ones. This
approach however is far outside of the scope of this
class, so we deemed our method, the “most accurate”
for the scope of this class.

Cluster Number
(Repository Count)

Star Count /
Contributors

1 (306577) 7.06

2 (277) 81.62

3 (13) 84.89

4 (1024) 70.04

5 (62) 83.13

6 (4554) 43.69

Cluster one provides us with a considerable sample of
repositories with a low “Star/Contributors” ratio,
meaning there is lots of development support behind
the repositories given their respective interest.

Cluster Number
(Repository Count)

Star Count /
Fork Count

1 (206336) 3.45

2 (243) 5.08

3 (13) 3.70

4 (4258) 5.18

5 (60) 4.23

6 (939) 5.65

Moreover, again we can see that Cluster one provides
us with an extensive sample of repositories with a low
“Star/Fork” ratio. Again that means that development
on these repositories is very high and active compared
to other repositories.

Cluster Number
(Repository Count)

Fork Count /
Open Issues

10

1 (122622) 2.92

2 (30) 22.16

3 (108) 11.39

4 (1) 131.86

5 (482) 7.95

6 (3147) 5.55

Note: Cluster four seems to be a significant outlier,
K-Means should have been rerunning with just five

clusters and not six.

Cluster five provides us with a decent sized sample of
repositories with a large “Fork/Issue” ratio, meaning
there is not much errant code that is committed to the
repositories.

The subset of repositories that span these three
clusters number 348. These repositories, we believe,
have the potential to be very large and heavily
contributed to repositories in the future. As noted
above, we know this is not the best way to predict
trends and future growth, but limited to the scope of
this course, we are proud of the “predictions” we
made.

Overall we were able to use clustering to identify sets
of repositories to answer our initial questions.

7. Applications
7.1 Benefits for the Software Community

By analyzing time-series of different programming
languages, we can display numerous attributes that
can not only be applied open source software
developers but general coders. Identifying that
repositories using Python or Java are currently
experiencing very high contributions, and showing
how trends between dying and popular programming
languages can help prove the likelihood of these

languages dying out soon or continuing to prosper.

7.2 Future Repository Popularity Detection

Given our research and analysis Through our cluster
analysis, we were able to identify that
“Stars/Contributors,” “Stars/Forks,” and
“Forks/Issues” were the best indicators of future
growth and popularity of a repository. These
relationships will help developers working in open
source software a general direction to work towards
when creating new software. Furthermore,
understanding the “Fork/Issue” ratio shows
tremendous potential in future heavy traffic and
contributions.

11

8. Visualization
While we did an extensive job to portray a sufficient
amount of data visualizations within this paper, we
curated a website that enables users an interactive way
to play around with the findings stated throughout this
document. Our site has many other different aspects
including access to this paper and a separate page
showcasing our team. Access to our website can be
found here.

9. References
[1] “Stack Overflow Developer Survey 2017.” Stack
Overflow, insights.stackoverflow.com/survey/2017.

[2] Scacchi, Walt. “The Future of Research in
Free/Open Source Software Development .” 2010.

[3] Hu, Yan, et al. “Influence Analysis of Github
Repositories.” SpringerPlus, Springer International
Publishing, 5 Aug. 2016,
www.ncbi.nlm.nih.gov/pmc/articles/PMC4975729/.

[4] Chełkowski, Tadeusz, et al. “Inequalities in Open
Source Software Development: Analysis of
Contributor's Commits in Apache Software
Foundation Projects.” PLOS ONE, Public Library of
Science, 20 Apr. 2016,
journals.plos.org/plosone/article?id=10.1371%2Fjour
nal.pone.0152976.

[5] libraries.io/data.

[6] David Hand, Heikki Mannila and Padhraic Smyth.
2001. “Principles of Data Mining”, (34-37). MIT
Press.

12

https://carlcortright.github.io/OpenSourceMiners/website/index.html
http://insights.stackoverflow.com/survey/2017
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4975729/
http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0152976
http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0152976

