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1. Abstract 
Over time, the most popular programming languages       
have shifted dramatically. Moreover, while there      
might be an overall trend with the rise and fall of           
these languages, often it can be quite difficult to         
predict these fluctuations. So for this project, we have         
decided to dive into a large open-source dataset that         
looks into contributions to open-source software and       
try to map what we hope, will be an accurate          
representation of these trends. Acquired from      
libraries.io, this dataset with over 397+ million rows        
provides us with repository names, timestamps,      
programming languages, and many more attributes      
related to package managers supported through the       
platform. Providing this information gave us a lot of         
information, yet required a sizeable amount of       
cleaning, analyzing, and parsing. 

1.1 Important Questions 

The primary questions we will consider during the        
duration of this project will focus on analyzing trends         
in open source projects. What insights can we gain to          
improve the open source community further? How       
can we identify areas in the open source community         
that need improvement? Moreover, can we predict       
upcoming popular repositories? 

1.2 Brief Summary  

We based a lot of our analysis on trends we thought           
would exist between attributes. 

2. Introduction 

Our primary goal of this project is to gain insights          
about open source software. We will accomplish this        
goal by mining data from a dataset about open source          
projects. We will focus our work on four main areas:          
tracking trends in programming languages, analyzing      
how popular repositories have changed over time,       
how contributions to those repositories have changed       
over time, and also monitoring repository life cycles. 

2.1 Questions 

We will consider a few central questions to help guide          
us through the data mining process to gain better         
intuition about open source software. The first       
question we seek to answer is: “What insights can we          
gain to improve the open source community further?”.        
As we use various techniques to mine the data         
throughout the project, we hope to understand more        
about the information various languages used,      
contributions to popular repositories, and trends in       
dependencies which rely solely on those open source        
projects. The second question we hope to answer is:         
“How can we identify areas in the open source         
community that need improvement?”. This question      
will not only help us understand the missing aspects         
of the open source community but hopefully bridge a         
gap within the community. To find answers to this         
question, we will analyze trends in contributions and        
repositories to figure out areas of improvement within        
the open source community. Also, finally, we aim to         
answer the most driving question of our project: “Can         
we predict upcoming popular repositories?”. We hope       
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to answer this question using all the information from         
the mined data. Our team would like to predict         
upcoming popular repositories based on all the       
insights we gain from the data analysis we will         
perform. Answering this question will be beneficial to        
understanding the open source community. 

3. Related Work 

3.1 Literature Survey 

There has been a significant body of research done on          
patterns in open source contributions. Every year       
Stack Overflow, a popular site for asking and        
answering coding questions, does a poll of the        
developers on their platform [1]. This research is used         
to track popular languages and libraries developers       
are using on the platform. Other research focuses on         
the potential impacts of research on open source        
software on the broader computer science community       
[2]. This research can help act as a guide as we decide            
what areas of open source development are essential        
to focus on in our data mining project. The majority          
of the research in this area has explicitly focused on          
Github repositories, attempting to determine the      
influence of any given project [3]. In our work, with          
the dataset we have access to, we will attempt to          
extend this research to all open source projects        
independent of where they each one is hosted or built.          
Other research by the Apache foundation has shown        
that the majority of open source contributions people        
create are in a way that is not collaborative but instead           
driven by individual developers [4]. 

4. Dataset 
The dataset we will be using for our project comes          
from a company called libraries.io. The purpose of        
libraries.io is to monitor open source projects to help         
developers better understand dependencies for their      
projects. 

The dataset itself contains 311 million data points        
from 34 package managers and three source code        
repositories, including npm, GitHub, PyPi,     
RubyGems, Maven, Bower, and other large,      
language-specific package managers. With this     

breadth, libraries.io can track over 2.7 million unique        
open source packages, spanning 31 million      
repositories, tracking 161 million dependencies     
between them [5]. With this large of a dataset, we          
expect to have many different variables of interest that         
we can mine. 

The dataset comes packaged in several large CSV        
formatted files. The main file that we will be mining          
is the projects database. This file contains all of the          
individual projects libraries.io is tracking. This file       
also has vital attributes for each project including        
language, status (active, depreciated), dependent     
projects count and more. Other important datasets       
include the dependencies CSV, which has detailed       
information on interdependencies between projects.     
Using this module we can build a dependencies graph,         
and mine information about which projects are most        
important in the open source ecosystem. 

5. Main Techniques Applied 
5. 1 Data Cleaning and Preprocessing 

Data cleaning and preprocessing is a vital component        
of our project. It is crucial that we work with a dataset            
with good quality data to gain accurate results. We         
will conduct a series of significant steps to ensure we          
use data to a good standard. Our data preprocessing         
will focus on five main areas including data cleaning,         
integration, transformation, reduction, and    
discretization. These steps will ensure that the final        
results we will gain from our analysis will be as          
accurate as possible.  

5. 1.1 Proposed Work 

Since this dataset is already in excellent condition, we         
will not perform much cleaning on the dataset.        
However, some necessary data cleansing will need to        
be completed such as scrubbing the dataset to remove         
null values and synchronizing time zones. Once these        
simple tasks are complete, our team will perform        
more advanced data preprocessing techniques such as       
matching a unique user across multiple package       
managers. 
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Once our team has appropriately cleaned our data, we         
will then decide which patterns answer the questions        
asked of the dataset. Those will be used to create          
visualizations, such as bar plots and graphs to show         
the trends found in the given data. Using the data          

available, we will construct a dependency graph of all         
of the dependencies in the entire open source        
ecosystem. We will then conduct an eigenvector       
analysis on this graph to find the most influential         
projects. This same analysis can then be done on         
language-specific sub-graphs to find the most      
influential projects in each language.  

Finally, we will create a write up of what we have           
learned and possibly publish it online in a way that is           
consistent with the open source mentality that we are         
studying. It is essential to our team that what we learn           
about the open source community can be freely and         
openly shared. Our write up is made to align with the           
license that the libraries.io dataset is supporting. 

5.1.2 Evaluation Methods 

We will be gathering various conclusions from our        
dataset. Our project focuses on four areas: tracking        
trends in programming languages, analyzing how      
popular repositories have changed over time, how       
contributions to those repositories have changed over       
time, and also tracking repository life cycles. We will         
need to utilize various evaluation methods to draw        
insights about those topics. To track trends in        
programming languages over time, we will analyze       
the frequency of popular programming languages      
used in various open source projects and how that has          

shifted over time. To analyze how popular       
repositories have changed over time, we will       
investigate how project dependencies of various open       
source projects have changed over time. To analyze        
how contributions to repositories have changed over       

time, we will first narrow down our data range to top           
contributed repositories, and then we will analyze the        
rate at which the contributions to those repositories        
have changed over time. Through this, we will also be          
able to conclude information about repository life       
cycles. By looking at trends and dependencies of        
various repositories over time, we will be able to         
conclude the repository’s life cycle. 

In addition to analyzing our data in regards to the four           
main areas we will be focusing on, we will also          
compare our results to conclusions found in the        
Literature Survey section (2). 

5.1.3 Tools 

We will be using several tools to mine and analyze the           
dataset to reach our conclusions about open source        
software. The primary programming language in this       
project will be Python. We will be using various         
Python libraries to analyze, parse, and present our        
data. One of the tools we aim to use, Pandas, will be            
used for most of our data analysis. As for our          
computational and statistical analysis, we will be       
using SciPy and NumPy. Since our team will be         
presenting our findings through data visualizations,      
we will be using a plethora of different libraries         
including Matplotlib, Bokeh, graph-tool, Seaborn, and      
several others. Moreover, lastly, for a lot of our         
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numerical simulations, statistical modeling, data     
visualization, as well as a way to keep our code clean           
and organized we will be encapsulating our code in         
Jupyter Notebooks. 

Also, we will also use AWS Cloud 9 as a          
collaborative working environment. The Cloud 9 is a        
collaborative IDE that allows us to all contribute to         
the code base and run intensive data mining tasks on a           
much more powerful cloud computer. 

5.1.4 Milestones 

We will use the milestones outlined below to guide us          
through the process of mining our data. We will be          
watching the same timeline as outlined in the project         
description in regards to our milestones but we will         
mostly be following the milestone table our team has         
devised below for additional deadlines. 

No. Milestone Due Date 

1 Proposal Presentation* February 27th 

2 Proposal Paper* March 6th 

3 Data Hosting on AWS March 20th 

4 Data Cleaning & 
Preprocessing  

April 1st 

5 Create Test Data April 7th 

6 Progress Report* April 10th 

7 Data Visualizations April 17th 

8 Data Analysis April 17th 

9 Analyzing Results April 20th 

10 Application April 20th 

11 Interactive Site with 
Visualizations 

April 23rd 

12 Final Presentation* April 23rd 

13 Final Paper* May 1 

* indicates milestones (due dates) set by professor  

 

5.1.5 Data Hosting on AWS  

To collaboratively work on this project, we used a         
shared platform to work collaboratively on this       
project. We settled on using Amazon Web Services        
Cloud 9 as our IDE, cloud computing resource, and         
storage solution for our project. A significant amount        
of time involved figuring out and setting up the proper          
EC2 Instance type and mounting an EBS volume to         
the Instance. Once we finally loaded and unzipped the         
dataset to the volume on AWS, we began cleaning         
and preprocessing the data. 

5.1.6 Data Cleaning and Preprocessing  

We parsed and cleaned the data to ensure the quality          
of the dataset even though it came pre-processed. We         
performed several processes to further enhance the       
quality of our dataset including data cleaning, data        
integration, data transformation, and data reduction.      
The primary purpose of these pre-processing methods       
was to be confident that the dataset was clean of          
incomplete, noisy, and inconsistent data. The quality       
of data is significant when it comes to concluding the          
information because higher quality data yields more       
accurate results [6]. 

We used several libraries in python to help us         
organize and clean the data. The primary library that         
we used to accomplish this was Python Pandas.        
Pandas is a python library used for data manipulation         
and analysis.Since our data set consisted of millions        
of data points, we used the head function is Pandas to           
help us preview the data. Previewing various parts of         
our dataset allowed us to not only understand the         
organization of our dataset better but also helped us         
determine what steps we needed to take to ensure a          
high-quality dataset. Using the describe function in       
pandas gave us a better insight into our data set. We           
were able to gain quick summaries of our overall         
dataset using the describe function in pandas for        
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various columns. For example, we were able to        
conclude the average dependencies for open source       
projects. This conclusion was crucial for us to        
recognize the significant trends in our dataset. We        
used other functions in Pandas to delve deeper into         

our data. Once we were able to find unusual patterns          
and had a greater understanding of our data, we         
continued through the cleaning process. By analyzing       
the count for each attribute, we concluded that        
individual data values were missing. Missing values       
contribute significantly to data quality problems. It is        
imperative to handle these missing values to ensure        
our data analysis will yield high-quality results. To fix         
this issue, we filled in numerical data with the         
attribute mean and categorical data with a global        
constant relating to its corresponding attribute. The       
data comes in six different packages-- projects,       
versions, tags, dependencies, repositories, repository     
dependencies, and projects with related repository      
fields. Since we will be concluding all these six         
packages, we had to ensure that we applied this         
cleaning process on all six packages. 

After we completed our initial step of the data         
preprocessing method, data cleaning, we continued      
the process to ensure a data set of high standard. The           
next process involved data integration. We handled       
the issue of redundancy in this process. Since all our          
data is from a single database, we did not encounter          
the problem of running into data duplicates. Our data         
reduction was a significant step in our data        
preprocessing. This process eliminated irrelevant     
features and reduced noise which helped us crucially        
since we are working with a massive dataset. In turn,          
this will speed up the mining and allow for more          
straightforward visualizations. Our goal for data      
reduction was to use a dataset much smaller in         
volume representative of our whole dataset which       
would produce almost the same mining results as it         

would for our entire data set (see section ‘Create Test          
Data’ below). Our final step of data transformation        
included using the Pandas library in python to        
perform operations such as data discretization and       
normalization. 

5.1.7 Create Test Data 

We extracted a smaller subset of data from our data          
set to create our test data set. The test data allowed us            
to practically run code on a sample before applying it          
to the original dataset with over 397 million rows of          
data. Even though we are running an EC2 Instance         
through AWS that can process through all of our data          
quickly and seamlessly, we still think it would be         
beneficial to work through a smaller dataset on our         
machines as it would still take a substantial time         
running through our EC2 Instance. Moreover, since       
the AWS Instance we are running on is significantly         
more costly than running through the dataset on our         
computer, it would save us not only valuable time but          
money as well. 

5.1.8 Data Visualizations 

By the 17th of April, we plan on producing a set of            
stimulating visuals that we have obtained from mining        
through our dataset. This milestone will allow us to         
not only understand our dataset but also enable us to          
display our findings succinctly. We plan on       
visualizing what our team has stated in our Problem         
Statement (1) including finding trends within      
programming languages, popularities of open source      
repositories over time as well as their life cycles. We          
also plan on visualizing additional topics we might        
find interesting while mining the dataset. This       
additional knowledge will allow us to mine the data         
adequately given our other domain experience. 

5.1.9 Data Analysis 

In addition to our data visualization milestone, our        
data analysis milestone is in place so that we can start           
to mine and pull real results from our dataset. While          
all the previous milestones were in place to set us up           
to do our data analysis, we can finally begin to extract           
valuable knowledge from our dataset. Our team plans        
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on utilizing many different clustering methods on the        
data, and across many different dimensions to identify        
and find undiscovered   
patterns about open   
source development. 

We plan on applying    
most of the skills and     
techniques we are   
learning in this class.    
A rough exhaustive list    
includes clustering  
through k-means,  
k-medoids, DBSCAN;  
confusion matrices;  
contingency tables;  
naïve Bayesian  
classification; and  
linear, multiple, and   
log-linear regression  
models. 

5.1.10 Analyzing Results 

Similar to the previous milestone, analyzing our data        
is in place to allow us to examine our current results           
and attempt to comprehend all of our findings. While         

the previous milestone is our team mining the data, in          
analyzing the data we get to see what kinds of          

applications or  
implications that  
insight can provide.   
We will attempt to    
understand our  
findings through a few    
different metrics. First,   
we will evaluate our    
visualizations and find   
anything interesting  
from them. Next, from    
our data analysis using    
the tools stated from    
our Tools section (6),    
we will see if we can      
find anything that   
seems to provide any    

sort of information our team might find intriguing or         
unique. Moreover, once we have dug through our        

findings, we can further proceed to understand the        
direction our team would love to move forward with         
on this project. 

5.1.11 Application 
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Once we complete analyzing our data, we will        
conclude the applications from our results. This       
process will help us answer our questions that we         
defined in Evaluation Methods (5). We initially stated        
that our data mining would focus on four main areas:          
tracking trends in programming languages, analyzing      
how popular repositories have changed over time,       
how contributions to those repositories have changed       
over time, and repository life cycles. We will        
conclude applications and apply the results we will        
gain through our data analysis to these topics. In our          
application, we will focus on how our conclusions        
will help us make better and more useful decisions         
regarding open source projects. Open source projects       
play a significant role in the development of software.         
Tens of thousands of open source projects run        
worldwide, and millions of users rely on open source         
software [2]. Concluding applications based on our       
data analysis will help us better understand open        
source software that influences millions across the       
world. 

5.1.12 Interactive Site With Visuals 

While the course does not require this milestone, we         
think it would be a great way to showcase the data we            
have mined. We plan on hosting a website through         
GitHub pages, as a way to view and interact with the           
findings our team has mined. We aim to provide all          
our visuals, analyses we encountered, and how we        
mined and found all of our findings on our site so           
others can try and explore and understand how we         
came to this point. Creating this website is an         
essential step for us as we want to show off all the            
hard work we put into this project, as well as allow           
others to use the knowledge and data we mined to          
hopefully better the Open Source Software      
Community. 

5.1.13 Final Paper 

While our course requires this final paper, we still         
think it is a great way to portray the culmination of           
work our team has put into the project over the past           
few months. The final paper will be in the ACM SIG           
paper format with 11 point font and 1.1 line spacing          

just as all of our other progress reports are and will           
include our abstract, all of our related works and         
findings, as well as the tools we used. Moreover, if          
our findings are significant, we plan on releasing our         
paper for others to learn from and extend on if          
desired. 

5.1.14 Results from Preprocessing 

Below are a few graphs that parse through the entire          
dataset and provide us with a cluster map and a          
frequency table that hopefully visualizes the data in a         
meaningful way. Most of the other visualizations we        
have pulled so far have either provided no visually         
appealing data or did not correlate attributes. 

The above graphic is a representation of the        
“completeness” of our data. The graphic shows the        
Nullity correlation of one particular data set. The        
nullity correlation ranges from -1 (if one variable        
appears the other does not) to 0 (variables appearing         
or not appearing have no effect on one another) to 1           
(if one variable appears the other also does).        
Essentially this gave us a quick overview of the         
“completeness” of the data and allowed us to gain         
more insight into our dataset.  
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The graphic presented above shows us the       
“completeness” of one of the datasets. On the top of          
the graph, it is possible to see each column in the           
dataset. A dark bar represents complete data, where        
whitespace indicates null values. This quick      
visualization of the data allowed us to quickly rule out          
points of data to try to use in our data mining process            
as there seems to be a lack of information on some           
columns. 

5. 2 Data Warehouse  

After getting the data from libraries.io in a much more          
usable form, we then loaded the dataset into our EC2          
instance. The server acted as our data warehouse        
where we were able to interact and hold all the data in            
a meaningful way. Through AWS, we were able to         
manipulate the data in any way we wanted. Moreover,         
since the data we have was static, we did not have to            
worry about data coming from a transactional       
database. 

As for the data marts, we used individual aspects of          
our analytical work. For example, we took data from         
the primary dataset and created smaller subsets. These        
smaller subsets were necessary as it allowed our team         
to analyze the data more efficiently. Further, since the         
larger dataset was much more computationally      
difficult to compute, this was one of the only options          
we seemed to find. 

5. 3 Clustering and Classification 

The use of clustering was essential to answering a few          
of our core questions. To try to find deficiencies in the           
open source community we thought it would be best         
to try to cluster repositories, and from there we could          
identify clusters that are “lacking” and can benefit        
from increased community involvement. To do this,       
we went about implementing a K-Means clustering       
algorithm on the dataset. We can use common metrics         
from each repository to attempt to cluster repositories        
based on their “health.” We define a “healthy”        
repository to be a repository that has a comparable         
level of contribution to the number of issues that the          
repository is facing. Running K-Means on the       
Repositories dataset, using “Open Issue Count” and       

“Contributors Count” as the X and Y axis, and using          
six clusters, returned exciting results. 

Using the center of each cluster, we can compute the          
average number of Open Issues/Contributors; this can       
give us an insight into the “health” of each cluster.  

Cluster Number Open Issues/ 
Contributors 

1 1.28 

2 3.71 

3 3.49 

4 5.78 

5 1.03 

6 0.26 

Given the results defined above, we can see that         
Cluster four is in most need of more help, as the have            
the highest average ratio of Issues to Contributors.        
Not only did we run K-Means on just these two          
dimensions, but we also ran it across multiple metrics.         
We analyzed Six different metrics for each repository:        
“Stars Count,” “Forks Count,” “Open Issues Count”,       
Watchers Count,” “Contributors Count,” and     
“SourceRank”(Libraries.io custom ranking for each     
repository). The full results of all these clusterings,        
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including the center of each cluster, and the number of          
repositories in each cluster, can be found here. 

KMeans was not the only clustering algorithm we ran         
on the dataset. We implemented DBSCAN as well.        
When we ran DBSCAN on a smaller subset of our          
data we found that the results were inconclusive. The         
clusters that the algorithm returned were indistinct       
and had little variation between the two. We believe         
that the massive amount of data we have caused this          
as well as the fact that most repositories have a          
minimal distinction between them. When we ran       
DBSCAN on a more extensive set of our data we had           
lots of issues with RAM and memory management on         
our EC2, and we were unable to extract results.         
Although we were disappointed with this outcome, we        
learned a lot about the differences between clustering        
algorithms and how each one can produce massively        
different results. 

6. Key Results 
To revisit our fundamental questions: What insights       
can we gain to improve the open source community         
further? How can we identify areas in the open source          
community that need improvement? Can we predict       
upcoming popular repositories? 

How can we identify areas in the open source         
community that need improvement?  

The answer to this question, we believe that just one          
cluster of two data points is not enough. We decided          
to compile a list of repositories that we believe need          
help, but also are worth contributing. We decided on         
the metrics of “Issues/Contributors”,    
“Stars/Contributors”, and “SourceRank/Forks”. Using    
our K-Means algorithm we can detect the repositories        
most in need of contribution help, those with the most          
interest from the community, and Libraries.io’s      
favorite repositories with the least amount of work. 

Cluster Number 
(Repository Count) 

Open Issues / 
Contributors 

1 (6390) 1.28 

2 (703) 3.71 

3 (112) 3.49 

4 (20) 5.78 

5 (143696) 1.03 

6 (258) 0.26 

We selected Cluster two as the most “unhealthy”        
repository from this group. We acknowledge that       
Cluster four is in more “need” of community help,         
although the small sample size of repositories makes        
the cluster more of an outlier. 

 

Cluster Number 
(Repository Count) 

Star Count / 
Contributors 

1 (306577) 7.06 

2 (277) 81.62 

3 (13) 84.89 

4 (1024) 70.04 

5 (62) 83.13 

6 (4554) 43.69 

Here we will select Cluster two as we view it as the            
most significant cluster in need of community       
assistance. 

 

Cluster Number 
(Repository Count) 

Source Ranks /  
Fork Count 

1 (230669) 2.90 

2 (511) 151.44 

3 (31) 806.03 

4 (1) 2423.04 
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5 (111) 370.19 

6 (3453) 36.04 

Note: Cluster four seems to be a notable outlier,         
K-Means should have been rerunning with just five        
clusters and not six. 

Here we will select Cluster five as we view it as the            
most massive cluster with the highest rank and least         
amount of contribution.  

Merging the list of these three clusters we were able          
to identify 17 repositories in all three clusters. We         
deem these 17 repositories to be in need of the most           
community assistance. Using a more detailed      
approach we believe that our data mining could        
produce a list of top repositories that could use         
contribution. From there we could publish that list and         
hopefully attract developers to contribute to those       
repositories.  

Can we predict upcoming popular repositories?  

We took the same approach as the previous question         
to answer this question. We identified the clusters of         
“Stars/Contributors,” “Stars/Forks,” and   

“Forks/Issues” as the best indicators of future growth        
and popularity of a repository. These two indicators        
will give us a list of “up and come” repositories that           
we believe will become very widely used and popular         
soon. We do note that this approach may be flawed.          
The best way of predicting future “success” and        

prominence would most likely use Machine Learning       
to analyze past trends and predict future ones. This         
approach however is far outside of the scope of this          
class, so we deemed our method, the “most accurate”         
for the scope of this class. 

Cluster Number 
(Repository Count) 

Star Count / 
Contributors 

1 (306577) 7.06 

2 (277) 81.62 

3 (13) 84.89 

4 (1024) 70.04 

5 (62) 83.13 

6 (4554) 43.69 

Cluster one provides us with a considerable sample of         
repositories with a low “Star/Contributors” ratio,      
meaning there is lots of development support behind        
the repositories given their respective interest. 

Cluster Number 
(Repository Count) 

Star Count /  
Fork Count 

1 (206336) 3.45 

2 (243) 5.08 

3 (13) 3.70 

4 (4258) 5.18 

5 (60) 4.23 

6 (939) 5.65 

Moreover, again we can see that Cluster one provides         
us with an extensive sample of repositories with a low          
“Star/Fork” ratio. Again that means that development       
on these repositories is very high and active compared         
to other repositories. 

Cluster Number 
(Repository Count) 

Fork Count /  
Open Issues 

10 



 

1 (122622) 2.92 

2 (30) 22.16 

3 (108) 11.39 

4 (1) 131.86 

5 (482) 7.95 

6 (3147) 5.55 

Note: Cluster four seems to be a significant outlier,         
K-Means should have been rerunning with just five        

clusters and not six. 

Cluster five provides us with a decent sized sample of          
repositories with a large “Fork/Issue” ratio, meaning       
there is not much errant code that is committed to the           
repositories. 

The subset of repositories that span these three        
clusters number 348. These repositories, we believe,       
have the potential to be very large and heavily         
contributed to repositories in the future. As noted        
above, we know this is not the best way to predict           
trends and future growth, but limited to the scope of          
this course, we are proud of the “predictions” we         
made. 

Overall we were able to use clustering to identify sets          
of repositories to answer our initial questions. 

7. Applications 
7.1 Benefits for the Software Community 

By analyzing time-series of different programming      
languages, we can display numerous attributes that       
can not only be applied open source software        
developers but general coders. Identifying that      
repositories using Python or Java are currently       
experiencing very high contributions, and showing      
how trends between dying and popular programming       
languages can help prove the likelihood of these        

languages dying out soon or continuing to prosper. 

7.2 Future Repository Popularity Detection 

Given our research and analysis Through our cluster        
analysis, we were able to identify that       
“Stars/Contributors,” “Stars/Forks,” and   
“Forks/Issues” were the best indicators of future       
growth and popularity of a repository. These       
relationships will help developers working in open       
source software a general direction to work towards        
when creating new software. Furthermore,     
understanding the “Fork/Issue” ratio shows     
tremendous potential in future heavy traffic and       
contributions. 
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8. Visualization 
While we did an extensive job to portray a sufficient          
amount of data visualizations within this paper, we        
curated a website that enables users an interactive way         
to play around with the findings stated throughout this         
document. Our site has many other different aspects        
including access to this paper and a separate page         
showcasing our team. Access to our website can be         
found here. 
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